
A New Web-based Multi-tier Model for Distributed Automation Systems

N. Kakanakov, M. Shopov, G. Spasov

Keywords: Multi-tier model, Distributed Automation
systems, J2EE, XML

Abstract: In this paper a new Web-based multi-tier
model for Distributed Automation Systems is proposed. The
presented model is constructed for scalability, flexibility and
platform independence. Based on the model, integration of
automation and business information systems is attained.
The model consists of four tiers: Client tier, Presentation
tier, Services tier and Data tier. To achieve reliability and
security a functional separation of the services’ roles is
suggested.

The clients’ interaction with the system is based on
standard HTTP. The Presentation tier is implemented using
J2EE technology and acts as point of presence for the
services provided by the Services tier. The main application
logic of the model is located on the Services tier. The
communication between Presentation and Services tiers is
based on XML encoded messages. The Data tier
incorporates Databases and Controller Networks.

1. Introduction
Computer technology and automation is

currently built on a foundation that assumes the
existence of a perfect and complex infrastructure.
That is why even a single failure can ruin the
whole systems. Among these complex systems are
Distributed Automation Systems (DAS),
composed of many different nodes in need to
communicate with each other. The tasks for these
systems require reliable and predictable
performance even though the nodes are
individually unreliable. This approach is now
feasible because new technologies are present for
increasing scale of integration, and because on the
market today there are a plenty of new automation
devices with integrated TCP/IP stack and Web
server [1, 10].

The similarity of automation and
administrative systems originates the idea of
integrating these two sides of a business. To
accomplish this, the implementation should rely
on standard, flexible and innovative model. This
stimulates adaptation of well-known business
standards in DAS [5, 7, 10].

The presented multi-tier client/server model is
based on standard transport protocols, universal
data description language (XML) and web-
enabled microcontrollers. Its design is oriented
towards achievement of platform independence,
flexibility and scalability.

2. Related work
Fortino, et al. [3] and Pianegiani, et al. [6]

have proposed systems for distributed
measurements based on abstract three-tier
architecture. In these systems a Java Applet is
used as client interface, Java-based server presents
the middle tier and the connection with the
measurement devices is based on RMI and
traditional sockets.

A model for distributed measurement of
temperature and humidity has been proposed by
Spasov, et al. [7]. The paper focuses on adaptation
of standard business model in distributed
measurement. On the data tier the database is
substituted by controller network.

Jazdi in [4] has proposed a model for adapting
Web technologies in Industrial Automation. In
this model the functions of embedded devices are
presented as services on the middle-tier server,
called “Remote Service Server”.

A method for remote management of gas
chromatograph is proposed by Topp et al. [8]. The
paper presents two different approaches for
realization of remote management – CGI-based
and SOAP-based.

Winiecki et al. [9] have proposed a Java-based
software environment for designing virtual
measuring instruments. The presented specialized
server, with a controls library, allows distributed
implementation of a measuring system.

3. Background
Multi-tier architectures are traditionally used

for database applications. The middle tier
separates presentation and business functions and
its services allow communication between
programs based on different technologies and
programming languages [10].

Different technologies for realization of the
middle tier exist (e.g. transaction processing,
message-oriented, object-oriented, and Web-
based). They differ in communication protocols
and service allocation [10].

Multi-tier architecture provides many benefits
over traditional client/server architecture [12]:
• Installing and deploying the user interface is

virtually instantaneous - only the Web interface
in the middle tier needs to be updated.

• Without a "thick" client interface, it is easier
to deploy, maintain, and modify applications -
no matter where the client is located.

• Because the application itself is server-based,
users always access the most up-to-date version.

These benefits explain the growing popularity
of the multi-tier architecture, and why almost
every client/server application provider has
retooled or is retooling to support Web-based
clients [12].

4. Web-based Multi-tier model.
The presented model generally consists of

four tiers. The tiered architecture is chosen for
flexibility and separation of presentation and
business roles within the real automation. The
additive benefit is the security – every tier can
connect only to its direct neighbors. So the data
and the business rules cannot be directly accessed
from the Internet, and thus cannot be harmed (see
figure 1).

Figure 1: Architecture of the presented model.

On the top tier are the clients – Client tier.
They request services from the system using
standard internet browser. Different HTTP pages
are constructed for the different kinds of devices
(e.g. PCs, Laptop, PDA, cellphone).

The next tier is the Presentation tier. This tier
is responsible for handling the clients’ requests
and forming the view of the responses. After
receiving a request it is analyzed, transformed into
XML encoded queries, and dispatched to the
appropriate server from the next tier.

The Services tier works bellow the
presentation tier. On this tier all the functionality
of the model is placed. The different services
work on different servers, so a hardware failure of
a single server affects only the corresponding
service. This modular approach increases the
flexibility and reliability of the whole model.
Example functions of the servers in the services
tier are: data logging, plant control and
monitoring, commerce services, customers
support services, training services, accounting
services, etc (figure 1).

The lowest tier of the model is the Data tier.
Its role is inherited from the three-tier database
model. It depends on the upper tier servers. In the
case of logging server the data tier is a database.
In the case of transaction server the data tier is
presented of controller network (figure 1). Other
forms of data tier occur in other cases. Generally
the role of the data tier is to produce or store data.

5. Functional Description of the tiers
Next, a more in-depth description of the tiers,

their structure, functions, and interfaces is given.
The format of the messages exchanged between
individual tiers is chosen for best performance,
universality, and scalability. Client and
Presentation tiers interact through HTML/HTTP.
Communication between Presentation tier and
Services tier is based on XML, and the last two
tiers communicate through standard (JDBC,
ODBC) or custom protocols (CNDEP - Controller
Network Data Extracting Protocol [11]) (figure 2).

5.1. Client tier.
On this tier, the clients of the system reside. A

client can be any device with a standard internet
browser (PC, Laptop, PDA, Cellphone) (figure
2a). Because the communication with the
Presentation tier is based on exchange of standard
HTTP request/response pairs, there is no need for
extra plug-ins, keeping clients as thin, as possible.

Clients request services by using HTTP POST
method. There are two possibilities for service
request – device-oriented or data-oriented. If the
individual device that offers the service is known,
the device-oriented request is used. If the device
that offers the service is unknown or combined
request to two or more devices is required – the
data-oriented request is used. The response is a
simple hypertext document, specific for different
types of clients.

5.2. Presentation tier.
This tier is represented by a Web Portal

(figure 2b). It is a web server, which acts as point

Figure 2: Functional Scheme.

of presence for different services, offered by the
system. The popular Model-View-Controller
architecture [2] is used. Its implementation is
based on Sun Microsystems JavaServer Pages™
technology [12].

Figure 3: XML Request.

Controller functions are handled by a Servlet
(figure 2b). It processes all the HTTP requests and
forms XML queries. The Servlet offers services
for user authentication, input parsing and
validation, and applying rules for prioritization,
breaking-up, and grouping of queries.

The Servlet instantiates a JavaBean
component that implements the action (model)
and invokes its service method (figure 2b). For

each service on Services tier contacted, a separate
JavaBean component is created and the relevant
XML request (figure 3) assigned to it.

The request is then forwarded to a JavaServer
Page (JSP) (figure 2b) that represents the View.
The JSP extracts the XML response from the
JavaBean component, translates it using XTAGS
(custom tag library from Apache Software
Foundation) [13], and generate an appropriate
response to the client (figure 4). XTAGS is
implementation of Extensible Stylesheet
Language Transformation (XSLT) that is capable
of generating HTML, XHTML, and WML output
from XML source.

Figure 4: XSLT Transformation.

5.3. Services tier.
All the functionality of the model is

concentrated on this tier. It includes different

servers (figure 1), each having specific
functionality depending on particular service it
offers. A Common feature between all these
servers is the way they handle XML queries and
format XML responses.

Services working on this tier can be: data
logging, plant control and monitoring, commerce
services, customers support services, training
services, accounting services. The presented paper
concentrates on the plant control and monitoring
services.

Implementation of these services consists of
server (on the services tier) and controllers’
network (on the data tier). The server receives
XML queries and form transactions to the Data
tier. This server is called Transaction server
(figure 2c).

For parsing of the XML requests the SAX
parser is used. The reason is its event-driven
nature, suitable for the model. The Transaction
server parses the XML request, extracts queries,
and transforms them into transactions of
commands. These commands depend on the data
access protocol. The results of executed
commands are used for the formation of XML
responses, based on templates (figure 5).

Figure 5: XML response.

The actual communication with controllers is
based on a custom protocol - CNDEP [11]. This
protocol is optimized for monitoring and control
of automation devices. It is implemented over
UDP/IP. Transaction server sends commands to
controllers and receives results. This
communication is accomplished through sockets.
Commands can be of Get or Set type. The

response of a Set command is an
acknowledgement or an error message. On a Get
command controllers respond with actual data or
an error message.

5.4. Data tier.
The Data tier has different expressions for

different services on the Services tier. In case of
Information services it is a database and in case of
Transaction server it is controllers’ network
(figure 2d). The controllers’ network acts as a data
producing component. It can implement
communication with the controllers in different
ways, based on industrial standards or on custom
protocols [5].

Each controller in the network can implement
monitoring, diagnostic and control tasks. These
tasks determine three types of communication –
request/response, subscription and spontaneous
[8].

The Data tier interacts with the environment
by means of sensors and actuators, which
implements the actual monitoring and control.
The role of the controller is to drive the sensors
and actuators and to implement the protocol for
data extraction. In current implementation this
protocol is CNDEP [11].

6. Conclusions
The presented model is applicable for

enterprise systems, allowing integration of
business information technologies and
automation, or training. It is based on popular
multi-tier approach which provides inherited
separation of presentation and application logic,
security, and reliability. The component approach
used, allows interoperability and code reuse.

On the Services tier different functionality can
be combined and presented by a single Web
portal. The services on this tier can be physically
distributed on large distances, which allow
centralized control of different plants or factories.
Failure of a single server on this tier will affect
only the corresponding service, keeping other
services available.

Client and Presentation tiers of the model are
based on component-of-the-shelf solutions. On
the Client tier every web browser can be used.
The Presentation tier implementation is based on
Java enterprise technology. It can use every Web
server supporting Servlets/JSPs (e.g. Sun’s
Application Server, BEA WebLogic, Apache
Tomcat, IBM WebSphere, etc.) and standard web
application development tools.

The communication between Presentation and
Services tiers is based on XML encoded

messages. This provides the advantages of
abstracting away cross-platform communication
complexities, increased interoperability between
applications, portability for messaging, flexibility,
and self-describing data [10].

7. Future work
The future work can go in different directions.

One is the integration of web service architecture
with the model. The services on the Service tier
can be easily implemented as Web services. This
will make them dynamically discoverable and
suitable for interoperation over large distances.
Further, Web services could be provided by
controllers from the Data tier.

The other is deeper analysis of the model. This
includes long-term analysis of the network traffic
and servers’ load; using of proxies and service
replication; evaluating of different Web servers
for the model; etc.

8. Acknowledgements
The work in this paper is supported by

National Science Fund of Bulgaria project – “ВУ-
966”/2005, entitled “Web Services and Data
Integration in Distributed Automation and
Information Systems in Internet Environment”.

9. References
[1] Borriello, G., R. Want, “Embedded Computation
Meets the World Wide Web”, Communications of
ACM, Vol. 43 №5, pp. 59-66, May 2000.
[2] Buschmann, F., R. Meunier, H. Rohnert, P.
Sommerlad, M. Stal, “Pattern-Oriented Software
Architecture”, John Wiley and Sons, 1996, ISBN 0-
471-95869-7.
[3] Fortino, G., D. Grimaldi, L. Nigro, “Distributed
measurement patterns based on Java and web tools”,
IEEE Autotestcon Proceedings, pp. 624-628, 22-25,
Sep. 1997.
[4] Jazdi, N., "Component-based and Distributed Web
Application for Embedded Systems", International
Conference on Intelligent Agents, Web Technology
and Internet Commerce, 2001.
[5] Kakanakov, N., G. Spasov, “Adaptation of Web
service architecture in distributed embedded systems”,
Proceedings on the International Conference –
CompSysTech‘05, pp. IIIB.10-1 – IIIB.10-6, 16-17
June 2005.
[6] Pianegiani, F., D. Macii, P. Carbone, “An Open
Distributed Control and Measurement System Based
on Abstract Client-Server Architecture”, IEEE
Transactions on Instrumentation and Measurement,
Vol 52, Iss 3, pp 686-692, ISSN:0018-9456, Jun 2003
[7] Spasov G., N. Kakanakov, N. Lupanov, “Three-
tier distributed applications”, Computer
Science’2004, 6-8 Dec 2004.

[8] Topp, U., P. Müller, "Web based service for
embedded devices", 2001.
[9] Winiecki, W., M. Karkowski, "A new Java-based
software environment for distributed measuring
systems design", IEEE Transactions on
Instrumentation and Measurement, Vol 51, Issue: 6, pp
1340-1346, ISSN: 0018-9456, Dec 2002.
[10] Youngblood, G. M., "Smart Environments",
ISBN: 0471544485, Ch 5: “Middleware”, pp. 101-127,
2004.
[11] http://net-lab.tu-plovdiv.bg/CNDEP/ Controller
Network Data Extracting Protocol.
[12] http://java.sun.com/products/jsp/ JavaServer
Pages.
[13] http://jakarta.apache.org/taglibs/doc/xtags-doc/
XTAG custom tag library.

